Human alveolar epithelial cells expressing tight junctions to model the air-blood barrier.

نویسندگان

  • Anna Kuehn
  • Stephanie Kletting
  • Cristiane de Souza Carvalho-Wodarz
  • Urska Repnik
  • Gareth Griffiths
  • Ulrike Fischer
  • Eckart Meese
  • Hanno Huwer
  • Dagmar Wirth
  • Tobias May
  • Nicole Schneider-Daum
  • Claus-Michael Lehr
چکیده

This paper describes a new human alveolar epithelial cell line (hAELVi - human Alveolar Epithelial Lentivirus immortalized) with type I-like characteristics and functional tight junctions, suitable to model the air-blood barrier of the peripheral lung. Primary human alveolar epithelial cells were immortalized by a novel regimen, grown as monolayers on permeable filter supports and characterized morphologically, biochemically and biophysically. hAELVi cells maintain the capacity to form tight intercellular junctions, with high trans-epithelial electrical resistance (> 1000 Ω*cm²). The cells could be kept in culture over several days, up to passage 75, under liquid-liquid as well as air-liquid conditions. Ultrastructural analysis and real time PCR revealed type I-like cell properties, such as the presence of caveolae, expression of caveolin-1, and absence of surfactant protein C. Accounting for the barrier properties, inter-digitations sealed with tight junctions and desmosomes were also observed. Low permeability of the hydrophilic marker sodium fluorescein confirmed the suitability of hAELVi cells for in vitro transport studies across the alveolar epithelium. These results suggest that hAELVi cells reflect the essential features of the air-blood barrier, as needed for an alternative to animal testing to study absorption and toxicity of inhaled drugs, chemicals and nanomaterials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human alveolar epithelial cells expressing tight junctions to model the air - blood barrier 1

Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany; Department of Pharmacy, Saarland University, Saarbrücken, Germany; Department of Biosciences, University of Oslo, Oslo, Norway; Saarland University, Institute of Human Genetics, University Hospital, Homburg/Saar, Germany; SHG Clinics, Department of Cardiothoracic Surgery, Voelklingen Hea...

متن کامل

Co-cultivation of rat pneumocytes and bovine endothelial cells on a liquid-air interface.

The blood-air barrier is a most important functional element of the lung but little information is available about the cells constituting this barrier in vivo. The aim of the present study was to create an in vitro model of the blood-air barrier that would allow investigation of cellular interactions and alveolar metabolism, and would be suitable for in vitro drug screening. Rat pneumocytes and...

متن کامل

Hyperoxia stimulates the transdifferentiation of type II alveolar epithelial cells in newborn rats.

Supplemental oxygen treatment in preterm infants may cause bronchopulmonary dysplasia (BPD), which is characterized by alveolar simplification and vascular disorganization. Despite type II alveolar epithelial cell (AEC II) damage being reported previously, we found no decrease in the AEC II-specific marker, surfactant protein C (SP-C), in the BPD model in our previous study. We thus speculated ...

متن کامل

CALL FOR PAPERS Biomarkers in Lung Diseases: from Pathogenesis to Prediction to New Therapies Hyperoxia stimulates the transdifferentiation of type II alveolar epithelial cells in newborn rats

Hou A, Fu J, Yang H, Zhu Y, Pan Y, Xu S, Xue X. Hyperoxia stimulates the transdifferentiation of type II alveolar epithelial cells in newborn rats. Am J Physiol Lung Cell Mol Physiol 308: L861–L872, 2015. First published February 13, 2015; doi:10.1152/ajplung.00099.2014.—Supplemental oxygen treatment in preterm infants may cause bronchopulmonary dysplasia (BPD), which is characterized by alveol...

متن کامل

Influenza virus damages the alveolar barrier by disrupting epithelial cell tight junctions.

A major cause of respiratory failure during influenza A virus (IAV) infection is damage to the epithelial-endothelial barrier of the pulmonary alveolus. Damage to this barrier results in flooding of the alveolar lumen with proteinaceous oedema fluid, erythrocytes and inflammatory cells. To date, the exact roles of pulmonary epithelial and endothelial cells in this process remain unclear.Here, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ALTEX

دوره 33 3  شماره 

صفحات  -

تاریخ انتشار 2016